

## **HCO<sub>3</sub><sup>-</sup>-Coupled Na<sup>+</sup> Influx is a Major Determinant of Na<sup>+</sup> Turnover and Na<sup>+</sup>/K<sup>+</sup> Pump Activity in Rat Hepatocytes**

J. Gregory Fitz, Steven D. Lidofsky, Richard A. Weisiger, Ming-Hong Xie, Mary Cochran, Thomas Grotmol, and Bruce F. Scharschmidt

Department of Medicine and Liver Center, University of California, San Francisco, California

**Summary.** Recent studies in hepatocytes indicate that Na<sup>+</sup>-coupled HCO<sub>3</sub><sup>-</sup> transport contributes importantly to regulation of intracellular pH and membrane HCO<sub>3</sub><sup>-</sup> transport. However, the direction of net coupled Na<sup>+</sup> and HCO<sub>3</sub><sup>-</sup> movement and the effect of HCO<sub>3</sub><sup>-</sup> on Na<sup>+</sup> turnover and Na<sup>+</sup>/K<sup>+</sup> pump activity are not known. In these studies, the effect of HCO<sub>3</sub><sup>-</sup> on Na<sup>+</sup> influx and turnover were measured in primary rat hepatocyte cultures with <sup>22</sup>Na<sup>+</sup>, and [Na<sup>+</sup>]<sub>i</sub> was measured in single hepatocytes using the Na<sup>+</sup>-sensitive fluorochrome SBFI. Na<sup>+</sup>/K<sup>+</sup> pump activity was measured in intact perfused rat liver and hepatocyte monolayers as Na<sup>+</sup>-dependent or ouabain-suppressible <sup>86</sup>Rb uptake, and was measured in single hepatocytes as the effect of transient pump inhibition by removal of extracellular K<sup>+</sup> on membrane potential difference (PD) and [Na<sup>+</sup>]<sub>i</sub>. In hepatocyte monolayers, HCO<sub>3</sub><sup>-</sup> increased <sup>22</sup>Na<sup>+</sup> entry and turnover rates by 50–65%, without measurably altering <sup>22</sup>Na<sup>+</sup> pool size or cell volume, and HCO<sub>3</sub><sup>-</sup> also increased Na<sup>+</sup>/K<sup>+</sup> pump activity by 70%. In single cells, exposure to HCO<sub>3</sub><sup>-</sup> produced an abrupt and sustained rise in [Na<sup>+</sup>]<sub>i</sub> from ≈8 to 12 mM. Na<sup>+</sup>/K<sup>+</sup> pump activity assessed in single cells by PD excursions during transient K<sup>+</sup> removal increased ≈2.5-fold in the presence of HCO<sub>3</sub><sup>-</sup>, and the rise in [Na<sup>+</sup>]<sub>i</sub> produced by inhibition of the Na<sup>+</sup>/K<sup>+</sup> pump was similarly increased ≈2.5-fold in the presence of HCO<sub>3</sub><sup>-</sup>. In intact perfused rat liver, HCO<sub>3</sub><sup>-</sup> increased both Na<sup>+</sup>/K<sup>+</sup> pump activity and O<sub>2</sub> consumption. These findings indicate that, in hepatocytes, net coupled Na<sup>+</sup> and HCO<sub>3</sub><sup>-</sup> movement is inward and represents a major determinant of Na<sup>+</sup> influx and Na<sup>+</sup>/K<sup>+</sup> pump activity. About half of hepatic Na<sup>+</sup>/K<sup>+</sup> pump activity appears dedicated to recycling Na<sup>+</sup> entering in conjunction with HCO<sub>3</sub><sup>-</sup> to maintain [Na<sup>+</sup>]<sub>i</sub> within the physiologic range.

**Key Words** Na<sup>+</sup>/HCO<sub>3</sub><sup>-</sup> cotransport · symport · microelectrodes · membrane potential · SBFI · ion transport

### **Introduction**

Hepatocytes exhibit a mechanism for electrogenic Na<sup>+</sup>-coupled transport of HCO<sub>3</sub><sup>-</sup> across the basolateral membrane (Fitz, Persico & Scharschmidt, 1989a; Gleeson, Smith & Boyer, 1989; Renner et al., 1989b). This recently described mechanism

appears to contribute importantly to transmembrane HCO<sub>3</sub><sup>-</sup> flux as well as to regulation of intracellular pH (pH<sub>i</sub>) (Fitz & Scharschmidt, 1989), but little is known regarding its contribution to Na<sup>+</sup> transport or turnover. In cultured hepatocytes, <sup>22</sup>Na<sup>+</sup> influx and efflux are increased fivefold or more in the presence of an imposed HCO<sub>3</sub><sup>-</sup> gradient (Renner et al., 1989b), and HCO<sub>3</sub><sup>-</sup>-associated Na<sup>+</sup> movement appears to be a predominant pathway for electrogenic Na<sup>+</sup> transport (Fitz & Scharschmidt, 1989). These observations suggest that movement of Na<sup>+</sup> in association with HCO<sub>3</sub><sup>-</sup> contributes importantly to total Na<sup>+</sup> transport and turnover. However, the direction of net HCO<sub>3</sub><sup>-</sup>-coupled movement and the contribution of this mechanism to Na<sup>+</sup> transport under more physiological conditions are unknown.

In certain other epithelia, Na<sup>+</sup>-coupled HCO<sub>3</sub><sup>-</sup> transport mediates net HCO<sub>3</sub><sup>-</sup> extrusion (Soleimani, Grassi & Aronson, 1987). Because the HCO<sub>3</sub><sup>-</sup>:Na<sup>+</sup> stoichiometry appears to be 3:1, coupled Na<sup>+</sup> and HCO<sub>3</sub><sup>-</sup> transport is associated with movement of negative charge, and the interior negative membrane potential difference (PD) is therefore an effective driving force favoring efflux. Hepatocytes, however, exhibit a comparatively low resting PD, and indirect evidence suggests that the net direction of HCO<sub>3</sub><sup>-</sup>-coupled Na<sup>+</sup> transport is inward (Fitz et al., 1989a). If so, Na<sup>+</sup> influx through this mechanism might significantly affect intracellular Na<sup>+</sup> homeostasis as well as the activity of the Na<sup>+</sup>/K<sup>+</sup> pump, which is sensitive to changes in intracellular Na<sup>+</sup> concentration ([Na<sup>+</sup>]<sub>i</sub>) (Van Dyke & Scharschmidt, 1983) and accounts for up to 30% of hepatic oxygen consumption (Van Dyke, Gollan & Scharschmidt, 1983). The purpose of these studies was to determine the direction of HCO<sub>3</sub><sup>-</sup>-associated Na<sup>+</sup> movement under basal conditions and its effects on [Na<sup>+</sup>]<sub>i</sub>,

$\text{Na}^+$  turnover,  $\text{Na}^+/\text{K}^+$  pump activity, and hepatic oxygen utilization.

## Materials and Methods

### CHEMICALS

Radioisotopes ( $^{86}\text{Rb}^+$ ,  $^{22}\text{Na}^+$ , 3-O-[methyl- $^{14}\text{C}$ ]-glucose) were obtained from New England Nuclear (Boston, MA). Sodium-binding benzofuran isophthalate acetoxy methylester (SBFI-AM) and pluronic F-127 were obtained from Molecular Probes (Eugene, OR). Gramicidin D was obtained from Boehringer-Mannheim (Indianapolis, IN). Ouabain, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), and all other reagents were purchased from Sigma Chemical (St. Louis, MO).

### SOLUTIONS

Nominally  $\text{HCO}_3^-$ -free solutions were made fresh daily from concentrated stock solutions and contained (in mM): 135  $\text{Na}^+$ , 5  $\text{K}^+$ , 1.2  $\text{Ca}^{2+}$ , 0.8  $\text{Mg}^{2+}$ , 115.8  $\text{Cl}^-$ , 0.8  $\text{SO}_4^{2-}$ , 0.8  $\text{PO}_4^{2-}$ , 5 glucose, and 10 HEPES. pH was adjusted to  $\sim 7.4$  with NaOH/HCl, and solutions were equilibrated with 100%  $\text{O}_2$ .  $\text{HCO}_3^-$ -containing solutions included 25 mM  $\text{HCO}_3^-$  (substituted for  $\text{Cl}^-$ ) and were equilibrated with 95%  $\text{O}_2$ /5%  $\text{CO}_2$ .  $\text{Na}^+$ -free solutions were made by isosmotic substitution of choline for  $\text{Na}^+$ . All studies were performed at 37°C, and solutions were prewarmed and equilibrated with the appropriate gas prior to the study.

### STUDIES IN HEPATOCYTE MONOLAYERS

$^{22}\text{Na}^+$ , 3-O-[methyl- $^{14}\text{C}$ ]-glucose, and  $^{86}\text{Rb}^+$  uptake were measured in hepatocytes in monolayer culture as previously described (Scharschmidt & Stephens, 1981; Van Dyke & Scharschmidt, 1987). For these studies, hepatocytes were isolated from livers of male Sprague-Dawley rats by collagenase perfusion, separated by centrifugal elutriation, and plated on collagen-coated coverslips for 24–36 hr before use. Measurements were performed in triplicate in each batch of cells, and each experimental maneuver repeated on five or more batches of cells. Results are presented as the means  $\pm \text{SE}$  of the daily averages. There was some variation in the absolute rate of cation transport from different cell batches. However, within each batch, experimental maneuvers tended to produce a consistent deviation from the control value. Therefore, in addition to determining overall mean values (e.g., Tables 1 and 2), the effects of experimental maneuvers were analyzed as previously reported by determining the mean  $\pm \text{SE}$  of experimental values for each day expressed as a percentage of concurrent control values (Van Dyke & Scharschmidt, 1983).

### $^{22}\text{Na}^+$ Uptake Rate and Turnover

$^{22}\text{Na}^+$  uptake was linear for at least 150 sec, and the initial rate of  $^{22}\text{Na}^+$  uptake ( $\text{nmol} \cdot \text{min}^{-1} \cdot \text{mg cell protein}^{-1}$ ) was obtained by linear regression from multiple time points (generally four) over this period (Scharschmidt & Stephens, 1981). Previously published and preliminary studies showed that  $^{22}\text{Na}^+$  reached its equilibrium value within 45 min (Scharschmidt & Stephens, 1981;

Van Dyke & Scharschmidt, 1983). Consequently, steady-state  $^{22}\text{Na}^+$  content or pool size ( $\text{nmol} \cdot \text{mg cell protein}^{-1}$ ) was measured after 60 min. Turnover rate for the intracellular  $\text{Na}^+$  pool was calculated as  $^{22}\text{Na}^+$  uptake rate/ $^{22}\text{Na}^+$  content and expressed as percent  $\cdot \text{min}^{-1}$ .

### Ouabain-Sensitive Rubidium Uptake

$^{86}\text{Rb}^+$  uptake ( $\text{nmol} \cdot \text{min}^{-1} \cdot \text{mg cell protein}^{-1}$ ) with or without ouabain (5 mM) was linear for at least 10 min, and  $\text{Na}^+/\text{K}^+$  pump activity was determined as previously reported from the difference between  $^{86}\text{Rb}^+$  uptake in the absence and presence of ouabain when measured at 8 min (Van Dyke & Scharschmidt, 1983, 1987).

### Cell Volume

Cell volume was calculated from the steady-state (60 min) accumulation of 2 mM  $^{14}\text{C}$ -3-O-methylglucose (3-OMG) as previously described (Scharschmidt & Stephens, 1981; Van Dyke & Scharschmidt, 1983).  $[\text{Na}^+]_i$  was calculated as  $^{22}\text{Na}^+$  content/cell volume and expressed as  $\text{mmol} \cdot \text{liter}^{-1}$  cell water (Van Dyke & Scharschmidt, 1983).

### STUDIES IN INDIVIDUAL HEPATOCYTES

$\text{Na}^+/\text{K}^+$  pump activity in individual cells was determined from the effects of transient inhibition of the pump on membrane PD (Griff, Shirao & Steinberg, 1985; Scharschmidt, Griff & Steinberg, 1988) and on  $[\text{Na}^+]_i$ . Because electrogenic pump activity contributes to the negative PD and low  $[\text{Na}^+]_i$  characteristic of hepatocytes, inhibition of pump activity by removal of extracellular  $\text{K}^+$  (or exposure to ouabain) results in a decrease in the contribution of electrogenic pumping to PD and an increase in  $[\text{Na}^+]_i$ . Consequently, comparison of the changes in PD and  $[\text{Na}^+]_i$  in response to inhibition of pump activity in the presence and absence of  $\text{HCO}_3^-$  provides information regarding changes in  $\text{Na}^+/\text{K}^+$  pump activity in individual cells over time (see Results).

### Measurement of Membrane Potential Difference

PD was measured in individual hepatocytes grown on biomatrix (EHS)-coated coverslips using intracellular microelectrodes as previously described (Fitz et al., 1989a; Fitz & Scharschmidt, 1989; Fitz, Trouillot & Scharschmidt, 1989b). Coverslips were placed in a perfusion chamber mounted on the stage of an Olympus IMT-2 microscope, and cells were viewed at a magnification of 400 $\times$ . The chamber (volume  $\sim 1$  ml) was open at the top to allow access of the microelectrodes and was perfused by gravity at  $10 \text{ ml} \cdot \text{min}^{-1}$ . Microelectrode resistance was compensated with a bridge circuit before impalement (Axoprobe-1A, Axon Instruments, San Mateo, CA), and voltage deflections ( $V$ ) corresponding to 0.1 nA current pulses ( $I$ ) were used to estimate cell conductance ( $g_{\text{cell}}$ ), where  $g_{\text{cell}} = I/V$ . This allowed for stable intracellular recording for 1 hr or more, permitting repetition of experimental maneuvers in a single cell over time.

### Measurement of $[\text{Na}^+]_i$

Intracellular sodium concentration ( $[\text{Na}^+]_i$ ) was measured in individual hepatocytes using the  $\text{Na}^+$ -sensitive fluorochrome SBF1 (Harootunian et al., 1989; Minta & Tsien, 1989). Hepatocytes plated on EHS-coated glass coverslips were incubated at room temperature for 90 min in standard buffer containing 5  $\mu\text{M}$  SBF1 and 0.025% pluronic F-127. Following dye loading, each coverslip was rinsed and placed in a perfusion chamber (volume  $\sim 1$  ml) mounted on a Nikon Diaphot CM microscope (Nikon, Garden City, NY). Cell monolayers were perfused at 10  $\text{ml} \cdot \text{min}^{-1}$  at 37°C for a 5- to 10-min stabilization period. Subsequently, individual hepatocytes were optically isolated via a pinhole imaging system. Fluorescence measurements were performed using a SPEX CMII computer-controlled dual-wavelength excitation system (SPEX Industries, Edison, NJ) with excitation wavelengths of 340 and 380 nm, and emission was focused through a 480-nm cut-off filter. Following the completion of each study, *in situ* calibration was performed by equilibrating  $[\text{Na}^+]_i$  with extracellular sodium concentration ( $[\text{Na}^+]_e$ ) using the ionophore gramicidin. The calibration solutions contained 4  $\mu\text{M}$  gramicidin in 100 mM  $\text{K}^+$  gluconate, 10 mM HEPES (pH 7.20), and varying amounts of NaCl and KCl to produce a final constant total  $\text{Na}^+$ -plus- $\text{K}^+$  concentration of 140 mM and  $[\text{Na}^+]_e$  of 0, 10, or 40 mM.  $[\text{Na}^+]_i$  was calculated from the ratio of fluorescence with excitation at 340 nm to that with excitation at 380 nm after subtraction of background fluorescence, according to the equation

$$[\text{Na}^+]_i = \alpha (R - R_0)/(R_m - R) \quad (1)$$

where

$$R_m = \frac{10R_0R_{10} + 30R_{10}R_{40} - 40R_0R_{40}}{40R_{10} - 30R_0 - 10R_{40}} \quad (2)$$

$$\alpha = 10 \frac{R_m - R_{10}}{R_{10} - R_0} \quad (3)$$

and  $R_0$ ,  $R_{10}$ , and  $R_{40}$  are the observed ratios at the extracellular  $\text{Na}^+$  concentrations of 0, 10, and 40 mM used for *in situ* calibration (Harootunian et al., 1989).

### STUDIES IN PERFUSED RAT LIVER

For studies in the intact organ, livers were removed from 220- to 260-g male Sprague-Dawley rats under ether anesthesia and perfused via the portal vein with 50 ml of recirculating fluorocarbon emulsion (Oxypheral FC-43, Alpha Therapeutics, Los Angeles, CA) at 22–26  $\text{ml} \cdot \text{min}^{-1}$  in a specially designed perfusion chamber as previously described (Brissot et al., 1985). After a 30-min stabilization period, single-pass perfusion with  $\text{HCO}_3^-$ -containing media was initiated for an additional 10-min equilibration period.

$^{86}\text{Rb}$  uptake was determined by measuring the accumulation of total liver  $^{86}\text{Rb}$  with time under standardized conditions. A NaI scintillation crystal (Model TD76S76, Tennelec, Oak Ridge, TN) was suspended 5–10 mm above the liver, and the stepwise increase in liver radioactivity determined for a series of bolus injections of  $^{86}\text{Rb}$  ( $\sim 2 \mu\text{Ci}$  each) into the portal vein catheter. To avoid measuring extracellular radioactivity, the liver was perfused with nonradioactive buffer for at least 30 sec before each measurement. Control studies indicated that uptake rates determined by

this method remained linear for at least 20 min with correlation coefficients  $> 0.99$ , consistent with minimal efflux of  $^{86}\text{Rb}$  from the liver over this period. After establishing the baseline uptake rate from nominally bicarbonate-free buffer, bicarbonate was abruptly introduced and the uptake rate again determined. Results were expressed as percent change in uptake relative to the basal period.

In separate studies, the partial pressure of oxygen in the effluent perfusate was measured continuously using an oxygen-sensitive electrode located at the hepatic vein catheter, and hepatic oxygen consumption was calculated from the difference in perfusate oxygen partial pressure of the portal and hepatic veins, perfusion flow rate, and liver weight (Van Dyke et al., 1983; Weisiger, Fitz & Scharschmidt, 1989).

### DATA ANALYSIS

Results are reported as mean  $\pm \text{SE}$ . The effects of experimental maneuvers were analyzed using Student's *t* test (paired or unpaired, as appropriate);  $P < 0.05$  was considered to be statistically significant.

### Results

#### STUDIES IN HEPATOCYTE MONOLAYERS

##### $^{22}\text{Na}^+$ Uptake, Content, and Turnover

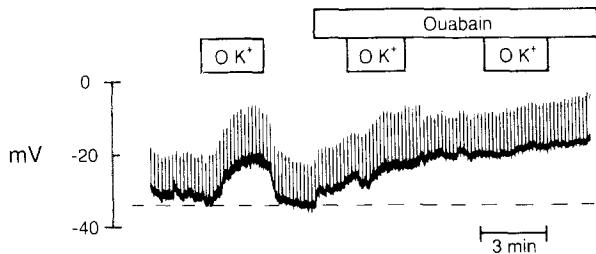
To determine the effect of  $\text{HCO}_3^-$  on  $\text{Na}^+$  uptake rate and turnover under steady-state conditions, monolayers were preincubated in nominally  $\text{HCO}_3^-$ -free or  $\text{HCO}_3^-$ -containing media for 60 min. The results are summarized in Table 1. The initial rate of  $^{22}\text{Na}^+$  uptake in the absence of  $\text{HCO}_3^-$  averaged  $3.44 \pm 0.86 \text{ nmol} \cdot \text{min}^{-1} \cdot \text{mg cell protein}^{-1}$  and was consistently greater ( $5.65 \pm 1.47$ ) in each batch of cells when measured in the presence of  $\text{HCO}_3^-$ . This reflected an increase in initial rate of uptake in individual experimental *vs.* control monolayers of  $65 \pm 7\%$  ( $P < 0.03$ ) under steady-state conditions. To serve as a frame of reference,  $\text{Na}^+$  uptake rate was also measured in the presence of alanine (2–5 mM) which is known to enter hepatocytes via a  $\text{Na}^+$ -coupled uptake mechanism (Van Dyke & Scharschmidt, 1983), and an increase of  $105 \pm 24\%$  in individual monolayers was observed.

Intracellular  $^{22}\text{Na}^+$  pool size measured after 60 min increased in the presence ( $22.1 \pm 1.15 \text{ nmol} \cdot \text{mg protein}^{-1}$ ) as compared to absence ( $19.7 \pm 0.84 \text{ nmol} \cdot \text{mg protein}^{-1}$ ) of  $\text{HCO}_3^-$ , although this increase did not achieve statistical significance. Cell volume was unchanged and calculated  $[\text{Na}^+]_i$  also exhibited only a modest increase which was not statistically significant (Table 1). The observation that  $\text{HCO}_3^-$  causes an increase in the initial rate of  $^{22}\text{Na}^+$

**Table 1.** Effect of  $\text{HCO}_3^-$  and alanine on  $^{22}\text{Na}^+$  uptake and turnover and ouabain-suppressible  $^{86}\text{Rb}$  uptake in hepatocyte monolayers

| Conditions                                                                 | [ $\text{HCO}_3^-$ ] | 0               | 25 mM             | 0                 |
|----------------------------------------------------------------------------|----------------------|-----------------|-------------------|-------------------|
|                                                                            | [Alanine]            | 0               | 0                 | 2–5 mM            |
| Absence of Ouabain                                                         |                      |                 |                   |                   |
| $^{22}\text{Na}^+$                                                         |                      |                 |                   |                   |
| Initial uptake rate<br>(nmol · min <sup>-1</sup> · mg <sup>-1</sup> )      |                      | $3.44 \pm 0.86$ | $5.65 \pm 1.47^a$ | $6.15 \pm 0.97^b$ |
| Pool size<br>(nmol · mg <sup>-1</sup> )                                    |                      | $19.7 \pm 0.84$ | $22.1 \pm 1.15$   | $24.9 \pm 1.10^a$ |
| Turnover<br>(% · min <sup>-1</sup> )                                       |                      | $18.3 \pm 0.06$ | $26.8 \pm 0.09^b$ | $24.8 \pm 0.04^b$ |
| Concentration<br>(mmol · liter <sup>-1</sup> )                             |                      | $12.2 \pm 0.58$ | $13.7 \pm 0.80$   | $15.5 \pm 0.76^a$ |
| $^{86}\text{Rb}$                                                           |                      |                 |                   |                   |
| Ouabain-sensitive uptake<br>(nmol · mg <sup>-1</sup> · min <sup>-1</sup> ) |                      | $1.32 \pm 0.20$ | $1.92 \pm 0.15^a$ | $2.50 \pm 0.18^a$ |
| Presence of Ouabain                                                        |                      |                 |                   |                   |
| $^{22}\text{Na}^+$                                                         |                      |                 |                   |                   |
| Pool size                                                                  |                      | $91.0 \pm 3.0$  | $147.4 \pm 9.2^b$ | ND                |

Hepatocyte monolayers were preincubated in HEPES-buffered solutions in the nominal absence of  $\text{HCO}_3^-$ , presence of alanine (2–5 mM), or presence of  $\text{HCO}_3^-/\text{CO}_2$ , all at pH 7.4. The initial rates of  $^{22}\text{Na}^+$  and  $^{86}\text{Rb}$  uptake and  $^{22}\text{Na}$  pool size were determined as described in the text.  $\text{Na}^+$  turnover was calculated from pool size and uptake rate on individual days and apparent  $\text{Na}^+$  concentration was calculated from pool size and cell volume determined using  $^{14}\text{C}$ -3-O-methyl-D-glucose, which averaged  $1.61 \pm 0.05 \mu\text{l}/\text{mg}$  and did not differ between  $\text{HCO}_3^-$ -containing and nominally  $\text{HCO}_3^-$ -free incubations. Results represent the mean  $\pm$  SE of five or more separate studies done in triplicate in each batch of cells, where <sup>a</sup> indicates  $P < 0.05$  and <sup>b</sup> indicates  $P < 0.01$  when compared with values in  $\text{HCO}_3^-$ -free media. ND means not done.


uptake with a comparatively modest effect on  $[\text{Na}^+]_i$  and pool size implies increased  $^{22}\text{Na}^+$  turnover. Indeed, calculated turnover of the  $\text{Na}^+$  pool increased from  $18.3 \pm 0.06\% \text{ min}^{-1}$  in the absence of  $\text{HCO}_3^-$  to  $26.8 \pm 0.09\% \text{ min}^{-1}$  in the presence of  $\text{HCO}_3^-$ , representing an increase of  $46 \pm 3\% (P < 0.01)$ . Alanine had similar effects, increasing turnover by  $39 \pm 4\% (P < 0.01)$ .

To further explore the effect of  $\text{HCO}_3^-$  on  $\text{Na}^+$  transport, additional studies were performed in the presence of ouabain. In the nominal absence of  $\text{HCO}_3^-$ , exposure of ouabain increased intracellular  $\text{Na}^+$  content from  $19.7 \pm 0.84$  to  $91.0 \pm 3.0 \text{ nmol} \cdot \text{mg protein}^{-1}$  when measured at 60 min. In the presence of  $\text{HCO}_3^-$ , the increase in intracellular  $\text{Na}^+$  content with ouabain exposure was much greater ( $22.1 \pm 1.15$  to  $147 \pm 9.2 \text{ nmol} \cdot \text{mg protein}^{-1}, P < 0.01$ , Table 1). These findings suggest that  $\text{HCO}_3^-$ -associated  $\text{Na}^+$  movement is inward, and that intact  $\text{Na}^+/\text{K}^+$  pump function is essential to maintain  $\text{Na}^+$  homeostasis in the presence of  $\text{HCO}_3^-$ . The failure to demonstrate a statistically significant increase in calculated  $[\text{Na}^+]_i$  in the presence of  $\text{HCO}_3^-$  may reflect the difficulty in detecting small changes in  $[\text{Na}^+]_i$  in the presence of variability among monolayers and prompted us to study the effects of  $\text{HCO}_3^-$  on  $[\text{Na}^+]_i$  in individual hepatocytes (see below).

#### Ouabain-Sensitive $^{86}\text{Rb}$ Uptake

An  $\text{HCO}_3^-$ -dependent increase in  $^{22}\text{Na}^+$  turnover with only a modest increase in  $[\text{Na}^+]_i$  implies that exposure to  $\text{HCO}_3^-$  is also accompanied by increased  $\text{Na}^+$  efflux. Additional studies were performed to determine whether this was mediated by an increase in  $\text{Na}^+/\text{K}^+$  pump rate, assessed as ouabain-sensitive  $^{86}\text{Rb}$  uptake. The results are summarized in Table 1. In hepatocyte monolayers,  $74 \pm 8\%$  of total uptake was ouabain sensitive, and the proportion was not different among the separate study groups. Ouabain-sensitive  $^{86}\text{Rb}$  uptake in individual experimental *vs.* control monolayers was  $70 \pm 27\%$  greater ( $P < 0.025$ ) in the presence, as compared with the absence, of  $\text{HCO}_3^-$ . Alanine, which also enters via a  $\text{Na}^+$ -coupled mechanism, increased ouabain-sensitive  $^{86}\text{Rb}$  uptake in individual experimental *vs.* control monolayers by  $101 \pm 38\% (n = 5, P < 0.002)$  (Van Dyke & Scharschmidt, 1983). In separate studies, SITS (1 mM) had no effect on the increase in ouabain-sensitive  $^{86}\text{Rb}$  uptake produced by alanine, but inhibited by 40% ( $P < 0.05; n = 4$ ) the increase produced by  $\text{HCO}_3^-$ .

Studies were also done to assess the possibility that  $\text{HCO}_3^-$  might affect  $\text{Na}^+/\text{K}^+$  pump activity indirectly via alteration in  $\text{pH}_i$ . When the pH of the incubation medium was varied from 7.0 to 7.8 to

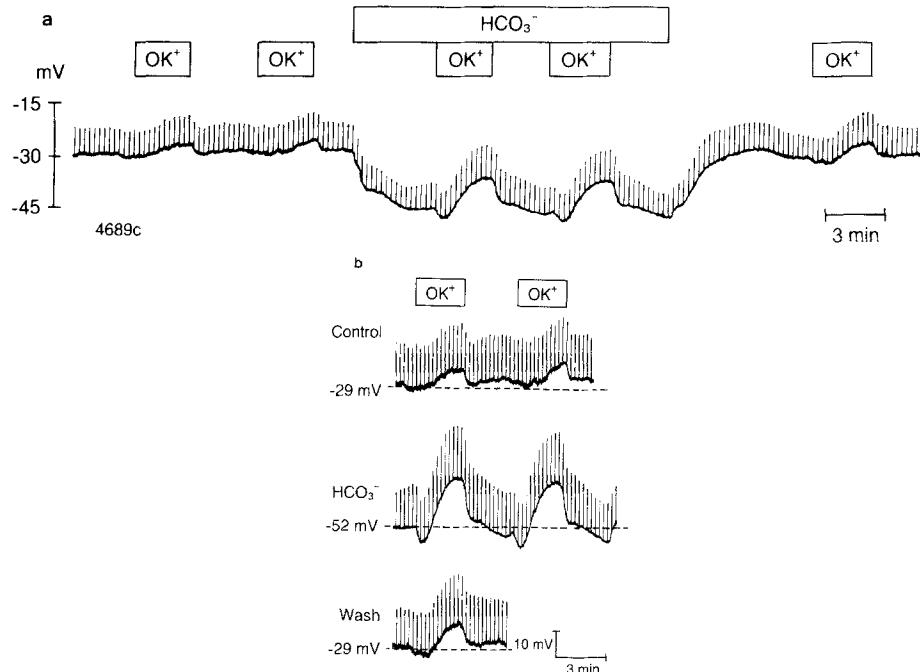


**Fig. 1.** Effect of  $\text{Na}^+/\text{K}^+$  pump inhibition on membrane PD. PD was measured from an individual hepatocyte as described in the text. Periodic upward deflections represent the voltage response to 0.1-nA current pulses and were used to estimate membrane conductance. Under basal conditions resting PD was  $-35 \text{ mV}$  (broken line) and acute removal of extracellular  $\text{K}^+$  resulted in depolarization of  $\approx 11 \text{ mV}$  with prompt recovery to basal levels on return to control perfusate. Inhibition of  $\text{Na}^+/\text{K}^+$  pump activity by ouabain (2 mM) depolarized the cell to a similar degree with a slower time course. In the presence of ouabain, the effect of removing extracellular  $\text{K}^+$  on PD was largely abolished

alter  $\text{pH}_i$  (Fitz et al., 1989b), there was no effect on ouabain-suppressible  $^{86}\text{Rb}$  uptake (101 and 103% of control, respectively).

#### STUDIES IN INDIVIDUAL HEPATOCYTES

The studies in hepatocyte monolayers described above indicate that  $\text{Na}^+$  entry and  $\text{Na}^+/\text{K}^+$  pump activity are increased in the presence of  $\text{HCO}_3^-$ . However, they provide limited information about the rapidity with which  $\text{HCO}_3^-$  affects the  $\text{Na}^+/\text{K}^+$  pump and do not directly indicate the direction of net  $\text{HCO}_3^-$ -coupled  $\text{Na}^+$  movement. Although  $\text{HCO}_3^-$  may stimulate both  $\text{Na}^+$  influx and efflux (Renner et al., 1989b), only net inward  $\text{HCO}_3^-$ -coupled  $\text{Na}^+$  flux would be expected to stimulate  $\text{Na}^+$  extrusion mediated via the  $\text{Na}^+/\text{K}^+$  pump.


#### Electrophysiologic Measurement of $\text{Na}^+/\text{K}^+$ Pump Activity

The resting PD in  $\text{HCO}_3^-$ -containing perfusate averaged  $-40 \pm 2 \text{ mV}$  ( $n = 41$ ) and ranged between  $-24$  and  $-54 \text{ mV}$ . Apparent cell conductance ( $g_{\text{cell}}$ ) measured simultaneously was  $14.5 \pm 2.1 \text{ nS}$ , similar to values previously reported (Fitz et al., 1989a,b; Fitz & Scharschmidt, 1989). Removal of extracellular  $\text{K}^+$  had biphasic effects on PD in most cells, with transient initial hyperpolarization followed by sustained depolarization of greater magnitude (Figs. 1 and 2). Several observations indicate that these responses are attributable to changes in  $\text{K}^+$  equilibrium potential and electrogenic  $\text{Na}^+/\text{K}^+$  pumping, respectively. Previous studies using this preparation

have shown that more negative values for resting potential are associated with higher resting  $\text{K}^+$  conductance ( $g_{\text{K}^+}$ ) (Fitz et al., 1989b). Consequently, the shift in  $\text{K}^+$  equilibrium potential caused by lowering  $[\text{K}^+]_o$  would be expected to hyperpolarize the membrane. In these studies, the initial hyperpolarization was not evident at resting potentials of  $-30 \text{ mV}$  or less (where resting  $g_{\text{K}^+}$  is relatively low), but increased in magnitude (range 2–6 mV) with more negative values of resting PD (where resting  $g_{\text{K}^+}$  is relatively high,  $r = 0.76$ ,  $P < 0.01$ ). When present, hyperpolarization appeared within  $\sim 15 \text{ sec}$ , corresponding to the lag time due to the dead space of the perfusion apparatus, and was eliminated in the presence of  $\text{Ba}^{2+}$  (eight out of eight studies) in concentrations previously shown to inhibit  $g_{\text{K}^+}$  (1 mM; Fitz et al., 1989b).

In contrast to early hyperpolarization seen in some cells, the predominant response to lowering  $[\text{K}^+]_o$  in all cells was membrane depolarization which developed more slowly. Depolarization was evident within 30 sec and reached near maximal values within 2 min. There was considerable cell-to-cell variation in the magnitude of the response (range 3–20 mV), but the response in a single cell was stable over time (c.v. 9% measured in eight cells at 5-min intervals). The magnitude of the depolarization response was not related to resting potential ( $r = 0.52$ , NS) but was inhibited by ouabain, as shown in Fig. 1. Under basal conditions, removal of extracellular  $\text{K}^+$  resulted in depolarization with prompt recovery on return to  $\text{K}^+$ -containing perfusate. Inhibition of pump activity by ouabain depolarized the cell to a similar degree over a longer time course and eliminated the effects of removal of extracellular  $\text{K}^+$ , consistent with a common effect. In 13 such studies, ouabain decreased the voltage response to removal of extracellular  $\text{K}^+$  from  $9 \pm 1 \text{ mV}$  to  $2 \pm 1 \text{ mV}$  ( $P < 0.001$ ). By contrast, inhibition of membrane  $\text{K}^+$  conductance with  $\text{Ba}^{2+}$  (1 mM) also decreased the resting voltage, but had no significant effect on this response ( $7 \pm 1 \text{ mV}$  vs.  $6 \pm 2 \text{ mV}$ ,  $n = 7$ ).

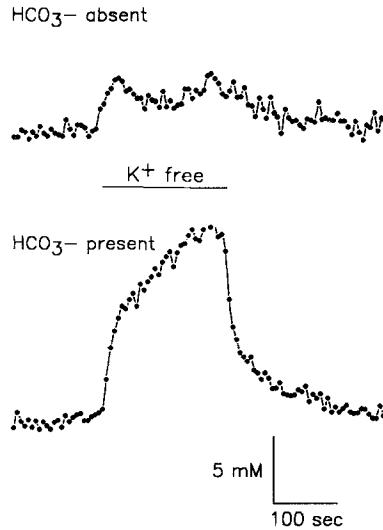
The effects of  $\text{HCO}_3^-$  on the PD response to transient pump inhibition are illustrated in Fig. 2 and summarized in Table 2. In 13 studies, resting PD in the absence of  $\text{HCO}_3^-$  averaged  $-24 \pm 1 \text{ mV}$ , and lowering  $[\text{K}^+]_o$  caused a depolarization of  $5 \pm 1 \text{ mV}$  (range 3–11 mV) with rapid recovery on return to control conditions. Exposure to  $\text{HCO}_3^-$  caused rapid hyperpolarization to  $-46 \pm 4 \text{ mV}$ , and lowering  $[\text{K}^+]_o$  produced a greater depolarization in each cell tested, averaging  $13 \pm 1 \text{ mV}$  (range 8–20 mV,  $P < 0.001$ ). The effects of  $\text{HCO}_3^-$  on this response were apparent within 2 min (it was not possible to evaluate earlier points



**Fig. 2.** Effect of  $\text{HCO}_3^-$  on membrane PD and response to inhibition of the  $\text{Na}^+/\text{K}^+$  pump by removal of extracellular  $\text{K}^+$  in a single hepatocyte. (A) In the continuous recording, reversible hyperpolarization of PD upon exposure to  $\text{HCO}_3^-$  is apparent. (B) Sections of the tracing in A are depicted at higher amplification, and the effects of  $\text{HCO}_3^-$  on the response to removal of extracellular  $\text{K}^+$  are demonstrated. In the absence of  $\text{HCO}_3^-$ , removal of extracellular  $\text{K}^+$  depolarized the cell by  $\sim 6$  mV with rapid recovery upon reintroduction of  $\text{K}^+$ . In the presence of  $\text{HCO}_3^-$ ,  $\text{K}^+$  removal resulted in transient initial hyperpolarization that was followed by depolarization of greater magnitude. The lower tracing recorded following the removal of  $\text{HCO}_3^-$  resembles the control response

**Table 2.** Effect of  $\text{HCO}_3^-$  on the change in membrane potential difference (PD) and  $[\text{Na}^+]_i$  in response to inhibition of  $\text{Na}^+/\text{K}^+$  pump activity in individual hepatocytes by removal of extracellular  $\text{K}^+$

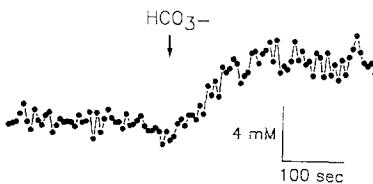
|                             | Potential difference (mV) |                                  | $[\text{Na}^+]_i$ (mM) |                                  |
|-----------------------------|---------------------------|----------------------------------|------------------------|----------------------------------|
|                             | Resting                   | Change with $\text{K}^+$ removal | Resting                | Change with $\text{K}^+$ removal |
| $\text{HCO}_3^-$ free       | $-24 \pm 1.0$ (13)        | $5 \pm 1$ (13)                   | $10.8 \pm 1.3$ (20)    | $3.4 \pm 0.5$ (6)                |
| $\text{HCO}_3^-$ containing | $-47 \pm 4^a$ (13)        | $13 \pm 1^a$ (13)                | $12.0 \pm 1.0$ (20)    | $9.2 \pm 1.3^a$ (6)              |


<sup>a</sup> Potential difference was measured in each cell in the absence and presence of extracellular  $\text{HCO}_3^-$  under resting conditions as well as following inhibition of  $\text{Na}^+/\text{K}^+$  pump activity by removal of extracellular  $\text{K}^+$ , as described in Materials and Methods (see also Fig. 2). Using a similar protocol,  $[\text{Na}^+]_i$  was measured with SBFI fluorescence under resting conditions as well as following removal of extracellular  $\text{K}^+$ . Results are presented as mean  $\pm$  SE, and the number of experiments is indicated in parentheses.

$P < 0.001$  as compared with  $\text{HCO}_3^-$ -free incubations.

because of the rapidly changing baseline following exposure to  $\text{HCO}_3^-$ ; Fig. 2), and these effects were rapidly reversible on return to  $\text{HCO}_3^-$ -free perfusate. This corresponds to an increase of  $195 \pm 34\%$ , suggesting a large increase in the contribution of electrogenic  $\text{Na}^+/\text{K}^+$  pump activity to resting potential in the presence of  $\text{HCO}_3^-$ .

#### Effects of Pump Inhibition on $[\text{Na}^+]_i$


Whereas these studies indicate that plasma membrane  $\text{Na}^+$  turnover and  $\text{Na}^+/\text{K}^+$  pump rate are increased in the presence of  $\text{HCO}_3^-$ , they do not directly indicate the direction of net  $\text{HCO}_3^-$ -associated  $\text{Na}^+$  movement. To address this important

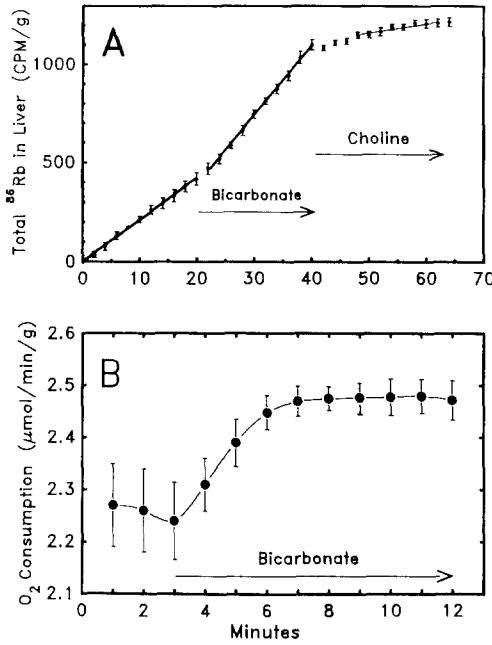


**Fig. 3.** Effect of  $\text{HCO}_3^-$  on the change in  $[\text{Na}^+]_i$  observed in response to inhibition of the  $\text{Na}^+/\text{K}^+$  by removal of extracellular  $\text{K}^+$ .  $[\text{Na}^+]_i$  was measured in individual hepatocytes with SBFI fluorescence in the absence (top) and presence (bottom) of perfusate  $\text{HCO}_3^-$ . In the presence of  $\text{HCO}_3^-$ , the increase in  $[\text{Na}^+]_i$  observed upon removal of extracellular  $\text{K}^+$  was greater than in the absence of  $\text{HCO}_3^-$ . In both recordings,  $[\text{Na}^+]_i$  promptly recovered to basal levels with reintroduction of extracellular  $\text{K}^+$ .

point, the effects of inhibition of  $\text{Na}^+/\text{K}^+$  pumping on  $[\text{Na}^+]_i$  were determined in the presence and absence of  $\text{HCO}_3^-$ . If the direction of net  $\text{HCO}_3^-$ -associated  $\text{Na}^+$  movement is inward, then  $[\text{Na}^+]_i$  should increase more rapidly in the presence, as compared with the absence, of  $\text{HCO}_3^-$  when the  $\text{Na}^+/\text{K}^+$  pump is inhibited.

In individual cells, resting  $[\text{Na}^+]_i$  as measured with SBFI fluorescence was higher in the presence ( $12.2 \pm 1.0 \text{ mM}$ ,  $n = 20$ ), as compared to the absence ( $10.8 \pm 1.3 \text{ mM}$ ,  $n = 20$ ), of  $\text{HCO}_3^-$ , although this difference did not achieve statistical significance (Table 2). The effects of acute inhibition of  $\text{Na}^+/\text{K}^+$  pump activity by removal of extracellular  $\text{K}^+$  in the absence (top) and presence (bottom) of  $\text{HCO}_3^-$  are shown in Fig. 3. In the absence of  $\text{HCO}_3^-$ , inhibition of pump activity was associated with an increase in  $[\text{Na}^+]_i$  of  $3.4 \pm 0.5 \text{ mM}$  ( $n = 6$ ). By contrast, in the presence of  $\text{HCO}_3^-$ , the same maneuver caused a rapid increase in  $[\text{Na}^+]_i$  of  $9.2 \pm 1.3 \text{ mM}$  ( $n = 6$ ), with prompt recovery on restoration of pump activity following return to normal concentrations of extracellular  $\text{K}^+$ . Notably,  $[\text{Na}^+]_i$  increased promptly with  $\text{K}^+$  removal in all studies, even though the initial PD response to  $\text{K}^+$  removal in some cells is hyperpolarization (Fig. 2). Thus, the change in  $[\text{Na}^+]_i$  predominantly reflects acute inhibition of  $\text{Na}^+/\text{K}^+$  pump activity rather than PD-driven changes in  $\text{HCO}_3^-$ -coupled  $\text{Na}^+$  movement.




**Fig. 4.** Effect of acute  $\text{HCO}_3^-$  exposure on  $[\text{Na}^+]_i$  in an individual hepatocyte.  $[\text{Na}^+]_i$  was measured with SBFI fluorescence before and following acute exposure to  $25 \text{ mM HCO}_3^-$ . The steady-state value for  $[\text{Na}^+]_i$  after  $\text{HCO}_3^-$  exposure is greater than that measured under basal conditions in  $\text{HCO}_3^-$ -free media.

#### Dynamic Effects on $\text{HCO}_3^-$ on $[\text{Na}^+]_i$

The studies described above demonstrate that under steady-state conditions  $\text{Na}^+/\text{K}^+$  pump activity is increased in the presence of  $\text{HCO}_3^-$  and further suggest that the increase is due to enhanced  $\text{HCO}_3^-$ -coupled  $\text{Na}^+$  influx. However, the trend toward an increase in  $[\text{Na}^+]_i$  did not achieve statistical significance. To better detect potentially small  $\text{HCO}_3^-$ -induced changes in  $[\text{Na}^+]_i$  against the background variability in  $[\text{Na}^+]_i$  among cells, studies were conducted in which the response to  $\text{HCO}_3^-$  exposure in individual cells was continuously monitored. A representative study is illustrated in Fig. 4. On exposure to  $\text{HCO}_3^-$ ,  $[\text{Na}^+]_i$  promptly increased and reached a new steady state higher than its basal value. In four such studies in which each hepatocyte served as its own control,  $[\text{Na}^+]_i$  was increased by  $4.0 \pm 0.9 \text{ mM}$  in the presence of  $\text{HCO}_3^-$  ( $P < 0.02$ ), yet mean  $[\text{Na}^+]_i$  did not significantly differ before and after  $\text{HCO}_3^-$  exposure ( $8.2 \pm 1.9$  vs.  $12.2 \pm 2.4 \text{ mM}$ ). Thus,  $\text{HCO}_3^-$  does produce a significant increase in  $[\text{Na}^+]_i$ , although this increase is difficult to detect in populations of cells because of cell-to-cell variation in  $[\text{Na}^+]_i$ .

#### STUDIES IN INTACT RAT LIVER

The studies in primary hepatocyte cultures summarized above suggest that intact liver should respond to the presence of  $\text{HCO}_3^-$  with an increase in  $\text{Na}^+/\text{K}^+$  pump activity and  $\text{O}_2$  consumption. Indeed,  $\text{HCO}_3^-$  had similar effects on  $^{86}\text{Rb}$  uptake by the intact perfused liver. Under basal conditions in the absence of  $\text{HCO}_3^-$ , total  $^{86}\text{Rb}$  uptake was linear with time for at least 20 min (Fig. 5A). The slope of this line gives the uptake rate and was used as a control to determine the effect of ion substitution on the relative uptake rate. Exposure to  $\text{HCO}_3^-$ -containing perfusate caused an abrupt increase in the uptake rate to  $176 \pm 6\%$  of control. Replacement of



**Fig. 5.** Effect of  $\text{HCO}_3^-$  on  $^{86}\text{Rb}$  uptake (A) and oxygen consumption (B) in the perfused liver.  $^{86}\text{Rb}$  uptake and oxygen consumption were measured in separate studies as described in the text. In the nominal absence of perfuse  $\text{HCO}_3^-$ ,  $^{86}\text{Rb}$  uptake was linear for at least 20 min. Following exposure to  $\text{HCO}_3^-$ , there was a prompt increase in the rate of  $^{86}\text{Rb}$  uptake to  $176 \pm 6\%$  of control and oxygen consumption to  $110 \pm 5\%$  of control. Changes were detectable within 1 min and maximal within 3 to 5 min

perfuse  $\text{Na}^+$  with choline at the end of the study decreased  $^{86}\text{Rb}$  uptake to  $13.8 \pm 3.5\%$  of control. Thus, as previously demonstrated (Renner et al., 1988), the majority of  $^{86}\text{Rb}$  uptake by the intact liver is  $\text{Na}^+$  dependent and likely reflects  $\text{Na}^+/\text{K}^+$  pump activity.

The increase in  $^{86}\text{Rb}$  uptake in the presence of  $\text{HCO}_3^-$  was accompanied by an increase in total hepatic oxygen consumption from  $2.26 \pm 0.09$  to  $2.48 \pm 0.04 \mu\text{mol}/\text{min}/\text{g}$  liver (mean  $\pm$  SE,  $n = 4$ ,  $P < 0.05$ ), an increase of 10% (Fig. 5B). The increase was detectable within 1 min and was maximal within 4–5 min, similar to the time course noted for  $^{86}\text{Rb}$  uptake by perfused liver and electrophysiologic measurement of  $\text{Na}^+/\text{K}^+$  pump activity in individual hepatocytes. These findings are all consistent with rapid modulation of  $\text{Na}^+/\text{K}^+$  activity by  $\text{HCO}_3^-$ .

## Discussion

The present studies have characterized the effects of  $\text{HCO}_3^-$  on  $\text{Na}^+$  transport and  $\text{Na}^+/\text{K}^+$  pump activity in hepatocytes. Our major findings are as follows: (i)  $^{22}\text{Na}^+$  entry rate and turnover are increased

by  $\sim 65$  and  $\sim 46\%$ , respectively, in the presence as compared to the absence of  $\text{HCO}_3^-$ ; (ii)  $\text{Na}^+/\text{K}^+$  pump rate, measured in single cells, monolayers, and intact liver increased from 70 to 160% depending on the method used; (iii) the increase in  $\text{Na}^+/\text{K}^+$  pump rate is associated with an increase in oxygen consumption by the intact liver; and (iv) the net direction of  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport is inward. These observations indicate that  $\text{HCO}_3^-$ -coupled  $\text{Na}^+$  movement represents a major contributor to total  $\text{Na}^+$  influx and turnover in hepatocytes. Rapid modulation of pump rate following exposure to  $\text{HCO}_3^-$  appears to be an adaptive response to maintain  $\text{Na}^+$  homeostasis. The metabolic cost is substantial as this results in a significant increase in pump rate and oxygen consumption by the intact organ. Before discussing these results further, it is appropriate to consider certain aspects of the study in more detail.

We have previously demonstrated that  $\text{HCO}_3^-$ -associated  $\text{Na}^+$  uptake is electrogenic, inhibited by stilbene derivatives, and not affected by  $\text{Cl}^-$  or amiloride, consistent with  $\text{Na}^+/\text{HCO}_3^-$  cotransport (Fitz & Scharschmidt, 1989; Renner et al., 1989b). In the present study,  $^{22}\text{Na}^+$  entry rate and turnover were measured under steady-state conditions following preincubation in the presence or absence of  $\text{HCO}_3^-$ . The increase in initial rate of  $^{22}\text{Na}^+$  uptake observed in these studies was less than the 4- to 10-fold stimulation reported previously (Renner et al., 1989b), reflecting the fact that earlier studies were performed in the presence of ouabain, a transmembrane  $\text{HCO}_3^-$  gradient, and 5 mM  $\text{Na}^+$  for the purpose of minimizing  $\text{HCO}_3^-$ -independent  $\text{Na}^+$  flux and maximizing any effects of  $\text{HCO}_3^-$ . The present studies indicate that, under more physiologic conditions, one-third or more of total  $\text{Na}^+$  flux is  $\text{HCO}_3^-$  dependent.

Although both  $\text{HCO}_3^-$  and alanine, which we employed as a positive control and frame of reference, increased the initial rate of  $^{22}\text{Na}^+$  uptake by 65% or more (Table 1),  $[\text{Na}^+]$  increased only slightly. Indeed, the increase was detected only in studies in which individual hepatocytes served as their own control (Fig. 4) and did not achieve statistical significance when populations were studied (e.g., Table 1).  $^{22}\text{Na}^+$  turnover, however, increased approximately 50% in the presence of  $\text{HCO}_3^-$ . This increase in  $\text{Na}^+$  influx and turnover implies that increased uptake of  $\text{Na}^+$  in the presence of  $\text{HCO}_3^-$  is associated with increased activity of the  $\text{Na}^+/\text{K}^+$  pump, and this was directly demonstrated using several approaches.

In hepatocyte monolayers,  $\text{Na}^+/\text{K}^+$  pump activity measured as ouabain-suppressible  $^{86}\text{Rb}$  uptake was increased by approximately 70%.  $\text{Na}^+/\text{K}^+$

pump activity was also assessed using an electrophysiologic technique previously applied to retinal pigment epithelium (Griff et al., 1985; Scharschmidt et al., 1988), in which the PD response to inhibition of the electrogenic  $\text{Na}^+/\text{K}^+$  pump by removal of extracellular  $\text{K}^+$  is measured with conventional microelectrodes.  $\text{K}^+$  removal in both tissues elicits a biphasic response. In retinal pigment epithelium, hyperpolarization due to alteration of the  $\text{K}^+$  equilibrium potential is the predominant response and masks depolarization due to  $\text{Na}^+/\text{K}^+$  pump inhibition. In hepatocytes, depolarization due to  $\text{Na}^+/\text{K}^+$  pump inhibition is the predominant response. The presumably reflects greater contribution of electrogenic  $\text{Na}^+/\text{K}^+$  pumping.

Using each cell as its own control, the presence of  $\text{HCO}_3^-$  more than doubled the effects on PD of removal of  $\text{K}^+$  (Fig. 2 and Table 2), consistent with a rapid increase in  $\text{Na}^+/\text{K}^+$  pump activity. The reversible hyperpolarization of basal PD produced by exposure to  $\text{HCO}_3^-$  was considerably larger ( $\approx -22$  mV) than the change in PD ( $\approx -8$  mV) attributable to increased pump activity, and likely reflects electrogenic  $\text{HCO}_3^-$  transport (Fitz et al., 1989a; Fitz & Scharschmidt, 1989) as well as the effects of intracellular pH ( $\text{pH}_i$ ) on membrane  $\text{K}^+$  conductance (Fitz et al., 1989b).

Exposure to  $\text{HCO}_3^-$  likely has a variety of effects on the metabolic activity of hepatocytes. However, several observations suggest that the large increase in  $\text{Na}^+/\text{K}^+$  pump rate by  $\text{HCO}_3^-$  results predominantly from the effects of  $\text{HCO}_3^-$  on  $\text{Na}^+$  influx. *First*, the effects of  $\text{HCO}_3^-$  on  $^{22}\text{Na}^+$  uptake and turnover imply an increase in pump rate, and the magnitude of the increase in  $^{22}\text{Na}^+$  influx and the increase in  $\text{Na}^+/\text{K}^+$  pump rate measured as ouabain-suppressible  $^{86}\text{Rb}$  uptake in monolayers is very similar. Moreover, the increase in  $\text{Na}^+/\text{K}^+$  pump rate produced by  $\text{HCO}_3^-$ , but not the increase produced by alanine, was partially inhibited by SITS, which inhibits  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport. *Second*, inhibition of  $\text{Na}^+/\text{K}^+$  pump activity produced a greater increase in  $[\text{Na}^+]_i$  in the presence, as compared with the absence, of  $\text{HCO}_3^-$ . This provides direct evidence that the direction of net coupled movement of  $\text{Na}^+$  and  $\text{HCO}_3^-$  is inward under basal conditions, and suggests that an increase in pump activity is necessary to keep  $[\text{Na}^+]_i$  in a physiologic range. *Third*, the small increase in  $[\text{Na}^+]_i$  in individual hepatocytes exposed to  $\text{HCO}_3^-$  would be expected to increase  $\text{Na}^+/\text{K}^+$  pump activity (Van Dyke & Scharschmidt, 1983). *Finally*, although exposure to  $\text{HCO}_3^-$  resulted in large changes in PD and presumably  $\text{pH}_i$ , neither appears to account for the observed changes in pump activity.

Studies in cardiac myocytes suggest that the

voltage-sensitive step is not rate limiting (Bahinski, Nakao & Gadsby, 1988), and membrane hyperpolarization should inhibit, not increase, pump turnover (DeWeer, Gadsby & Rakowski, 1988). In the present studies, there was no significant correlation between PD and the magnitude of the depolarization associated with inhibition of the pump in the presence or absence of  $\text{HCO}_3^-$ .  $\text{Na}^+/\text{K}^+$  pump rate in certain other epithelia appears to be sensitive to changes in  $\text{pH}_i$  (Eaton, Hamilton & Johnson, 1984). We therefore examined the effect of  $\text{pH}_i$  on  $\text{Na}^+/\text{K}^+$  pump activity by measuring ouabain-suppressible  $^{86}\text{Rb}$  uptake in hepatocytes incubated in media of varying pH. We have previously demonstrated that preincubation of hepatocytes in media with pH 7.0 or 7.8 alters  $\text{pH}_i$  by  $\sim -0.10$  and  $\sim 0.15$  pH units, respectively (Fitz et al., 1989b). In the present studies, these maneuvers had no effect on ouabain-suppressible  $^{86}\text{Rb}$  uptake in monolayers, suggesting that changes in  $\text{pH}_i$  are unlikely to account for the observed effects on pump rate.

To establish the relevance of our findings in primary hepatocyte cultures to intact liver, the effects of  $\text{HCO}_3^-$  on  $\text{Na}^+/\text{K}^+$  pump activity and  $\text{O}_2$  consumption were studied in perfused liver. As expected, introduction of  $\text{HCO}_3^-$  increased both  $^{86}\text{Rb}$  uptake rate and  $\text{O}_2$  consumption within 1 min. Moreover, the magnitude of the increase in  $^{86}\text{Rb}$  uptake was very similar to that in the monolayers, and the increase in  $\text{O}_2$  consumption of about 10% is approximately that predicted for an increase of 70% in the  $\text{Na}^+/\text{K}^+$  pump, which accounts for about 20–25% of hepatic  $\text{O}_2$  consumption (Van Dyke et al., 1983).

The demonstration that basolateral  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport is inward under basal conditions implies that it may function differently from similar mechanisms in other epithelia where it mediates net  $\text{HCO}_3^-$  efflux. In renal tubular cells, for example,  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport on the basolateral membrane mediates efflux of  $\text{HCO}_3^-$ , which is accumulated intracellularly due to the action of apical  $\text{Na}^+/\text{H}^+$  exchange. In hepatocytes, both  $\text{Na}^+/\text{H}^+$  exchange and  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport are localized to the basolateral membrane. Because  $\text{Na}^+/\text{H}^+$  appears to be inactive at physiologic  $\text{pH}_i$  (Renner et al., 1989a),  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport in hepatocytes may represent the predominant base loader under resting conditions. Recent studies suggest that  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport plays an important role in regulation of  $\text{pH}_i$  following intracellular acidification as well (Fitz & Scharschmidt, 1989; Lidofsky et al., 1990). The role of  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport in other hepatocellular functions including formation of  $\text{HCO}_3^-$ -rich bile is unknown. However, the present studies indicate that  $\text{HCO}_3^-$  coupling represents a major deter-

minant of  $\text{Na}^+$  influx and turnover and that the metabolic cost for this mechanism is high. Indeed, up to one-half of  $\text{Na}^+/\text{K}^+$  pump activity, representing 10% of total hepatic  $\text{O}_2$  consumption, appears dedicated to recycling the  $\text{Na}^+$  entering in conjunction with  $\text{HCO}_3^-$  so as to maintain  $[\text{Na}^+]$  in physiologic range.

The authors wish to acknowledge the important support of UCSF Liver Center Core Facilities, including the Cell Culture Facility (Dr. D.M. Bissell, Director), Biomathematics Core Facility (Dr. V. Licko, Director), and Editorial Core Facility (D. Fedorchak and M. Karasik, Editors).

This work was supported in part by NIH grants AM-26270, DK-43278, DK-26743, DK-08311, and DK-01987; an American Liver Foundation Postdoctoral Research Fellowship and Liver Scholar Awards (S.D.L.); and an American Gastroenterological Association/G.D. Searle Research Scholar Award (J.G.F.).

## References

Bahinski, A., Nakao, M., Gadsby, D.C. 1988. Potassium translocation by the  $\text{Na}^+/\text{K}^+$  pump is voltage insensitive. *Proc. Natl. Acad. Sci. USA* **85**:3412-3416

Brissot, P., Wright, T.L., Ma, W.-L., Weisiger, R.A. 1985. Efficient clearance of non-transferrin-bound iron by rat liver: Implications for hepatic iron loading in iron overload states. *J. Clin. Invest.* **76**:89-94

DeWeer, P., Gadsby, D.C., Rakowski, R.F. 1988. Voltage dependence of the Na-K pump. *Annu. Rev. Physiol.* **50**:225-241

Eaton, D.C., Hamilton, K.L., Johnson, K.E. 1984. Intracellular acidosis blocks the basolateral Na-K pump in rabbit urinary bladder. *Am. J. Physiol.* **247**:F946-F954

Fitz, J.G., Persico, M., Scharschmidt, B.F. 1989a. Electrophysiologic evidence for  $\text{Na}^+$ -coupled bicarbonate transport in cultured rat hepatocytes. *Am. J. Physiol.* **256**:G491-G500

Fitz, J.G., Scharschmidt, B.F. 1989.  $\text{Na}^+$ -coupled  $\text{HCO}_3^-$  transport is the principal mechanism for plasma membrane  $\text{HCO}_3^-$  movement in hepatocyte. *Clin. Res.* **37**:537 (Abstr.)

Fitz, J.G., Trouillot, T.E., Scharschmidt, B.F. 1989b. Effect of pH on membrane potential and  $\text{K}^+$  conductance in cultured hepatocytes. *Am. J. Physiol.* **257**:G961-G968

Gleeson, D., Smith, N.D., Boyer, J.L. 1989. Bicarbonate-dependent and -independent intracellular pH regulatory mechanisms in rat hepatocytes: Evidence for  $\text{Na}^+/\text{HCO}_3^-$  cotransport. *J. Clin. Invest.* **84**:312-321

Griff, E.R., Shirao, Y., Steinberg, R.H. 1985.  $\text{Ba}^{2+}$  unmasks  $\text{K}^+$  modulation of the  $\text{Na}^+/\text{K}^+$  pump in the frog retinal pigment epithelium. *J. Gen. Physiol.* **86**:853-876

Harootunian, A.T., Kao, J.P.Y., Eckert B.K., Tsien, R.Y. 1989. Fluorescence ratio imaging of cytosolic free  $\text{Na}^+$  in individual fibroblasts and lymphocytes. *J. Biol. Chem.* **264**:19458-19467

Lidofsky, S.D., Fitz, J.G., Xie, M.-H., Scharschmidt, B.F. 1990. Novel mechanism for intracellular pH regulation in hepatocytes. *Clin. Res.* **38**:468A

Minta, A., Tsien, R.Y. 1989. Fluorescent indicators for cytosolic sodium. *J. Biol. Chem.* **264**:19449-19457

Renner, E.L., Lake, J.R., Cragoe, E.J., Jr., Van Dyke, R.W., Scharschmidt, B.F. 1988. Ursodeoxycholic acid choleresis: Relationship to biliary bicarbonate secretion and study of the effects of amiloride analogues. *Am. J. Physiol.* **253**:G613-G621

Renner, E.L., Lake, J.R., Scharschmidt, B.F. 1989a.  $\text{Na}^+/\text{H}^+$  exchange activity in rat hepatocytes: Role in regulation of intracellular pH. *Am. J. Physiol.* **256**:G44-G52

Renner, E.L., Lake, J.R., Scharschmidt, B.F., Zimmerli, B., Meier, P. 1989b. Rat hepatocytes exhibit electrogenic basolateral  $\text{Na}^+/\text{HCO}_3^-$  cotransport. *J. Clin. Invest.* **83**:1225-1235

Scharschmidt, B.F., Griff, E., Steinberg, R.H. 1988. Effect of taurine on the retinal pigment epithelium of the frog: Electrophysiologic evidence for stimulation of an apical  $\text{Na}^+/\text{K}^+$  pump. *J. Membrane Biol.* **106**:71-81

Scharschmidt, B.F., Stephens, J.E. 1981. Transport of sodium, chloride and taurocholate by cultured rat hepatocytes. *Proc. Natl. Acad. Sci. USA* **78**:986-999

Soleimani, M., Grassl, S.M., Aronson, P.S. 1987. Stoichiometry of  $\text{Na}^+/\text{HCO}_3^-$  cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. *J. Clin. Invest.* **79**:1276-1280

Van Dyke, R.W., Gollan, J.L., Scharschmidt, B.F. 1983. Oxygen consumption by rat liver: Effects of taurocholate and sulfobromophthalein transport, glucagon, and cation substitution. *Am. J. Physiol.* **244**:G523-G531

Van Dyke, R.W., Scharschmidt, B.F. 1983.  $\text{Na},\text{K}$ -ATPase-mediated cation pumping in cultured rat hepatocytes: Rapid modulation by alanine and taurocholate transport and characterization of its relationship to intracellular sodium concentration. *J. Biol. Chem.* **258**:12912-12919

Van Dyke, R.W., Scharschmidt, B.F. 1987. Effects of chlorpromazine on  $\text{Na},\text{K}$ -ATPase pumping and solute transport in rat hepatocytes. *Am. J. Physiol.* **253**:G613-G621

Weisiger, R.A., Fitz, J.G., Scharschmidt, B.F. 1989. Hepatic oleate uptake: Electrochemical driving forces in the intact liver. *J. Clin. Invest.* **83**:411-420

Received 14 September 1990; revised 4 December 1990